Smart Grid Barriers To Critical Thinking

The battle for the development of smart grids, that would allow for optimisation of the use electricity produced at a low voltage, is almost lost in some countries in Europe. It is a tough battle to win because the political leaders who govern these countries are at the service of electricity companies, instead of being at the service of the citizen and, above all, of their sustainable future.

All countries need to adapt their current electricity networks and convert them into smart grids so that the electricity generated at low voltage can be used by consumers. It is about moving from a system where there is a main producer and many consumers to another system, similar to the internet, where there are many producers and many consumers. The consumers can even be the producers too, generating electricity from solar panels and selling it back to the grid.

The achievement of such a system would mean a revolution in the electricity system. A revolution to which many of today’s power companies create obstacles because they do not want a mass of competitors to enter the market.

The solution to the problem lies in the necessary nationalisation of all electric lines and networks of transport and distribution; it is necessary to rescue the infrastructure which has a high strategic value, taking it back from the private hands that currently have hold of it. The shareholder value of electricity companies should not be put above the general interest.

Governments  should be defending the citizen by preparing a future based mainly on renewable energies, but a lot of the time they prefer to do nothing to avoid the obstacles that electricity companies impose on progress.

Unfortunately this is not an easy task as the renewal of electricity grids is not a technical problem, it is a political and regulatory problem. These issues are blocking, in the United States, the renewing of the transport and distribution networks. The same could be said in Europe where power companies are an even more powerful lobby than in the United States.

As a result, the main issue is how to move forward in a way that removes the obstacles that hamper the development of smart grids. In the case of the United States, it is also a question of optimising the enormous wind resources of the Dakotas and solar energy in the Mojave Desert, to produce electricity and transport it to large urban centres for consumption.

Europe has it harder than the United States because of the electricity companies; they are not interested in promoting smart grids and much less the management of the power demand. They are, by definition, companies that work from the supply side, so more demand is a good thing for them. Let’s hope that this situation changes over the coming years and that governments start to put a sustainable future at the heart of all future power generation and distribution developments.

Enthusiast marketer and creative copywriter.

A smart grid is an electrical grid which includes a variety of operational and energy measures including smart meters, smart appliances, renewable energy resources, and energy efficient resources.[1][2] Electronic power conditioning and control of the production and distribution of electricity are important aspects of the smart grid.[3]

Smart grid policy is organized in Europe as Smart Grid European Technology Platform.[4] Policy in the United States is described in 42 152, subch. IX § 17381.

Roll-out of smart grid technology also implies a fundamental re-engineering of the electricity services industry, although typical usage of the term is focused on the technical infrastructure.[5]


Historical development of the electricity grid[edit]

The first alternating currentpower grid system was installed in 1886 in Great Barrington, Massachusetts.[6] At that time, the grid was a centralized unidirectional system of electric power transmission, electricity distribution, and demand-driven control.

In the 20th century local grids grew over time, and were eventually interconnected for economic and reliability reasons. By the 1960s, the electric grids of developed countries had become very large, mature and highly interconnected, with thousands of 'central' generation power stations delivering power to major load centres via high capacity power lines which were then branched and divided to provide power to smaller industrial and domestic users over the entire supply area. The topology of the 1960s grid was a result of the strong economies of scale: large coal-, gas- and oil-fired power stations in the 1 GW (1000 MW) to 3 GW scale are still found to be cost-effective, due to efficiency-boosting features that can be cost effective only when the stations become very large.

Power stations were located strategically to be close to fossil fuel reserves (either the mines or wells themselves, or else close to rail, road or port supply lines). Siting of hydro-electric dams in mountain areas also strongly influenced the structure of the emerging grid. Nuclear power plants were sited for availability of cooling water. Finally, fossil fuel-fired power stations were initially very polluting and were sited as far as economically possible from population centres once electricity distribution networks permitted it. By the late 1960s, the electricity grid reached the overwhelming majority of the population of developed countries, with only outlying regional areas remaining 'off-grid'.

Metering of electricity consumption was necessary on a per-user basis in order to allow appropriate billing according to the (highly variable) level of consumption of different users. Because of limited data collection and processing capability during the period of growth of the grid, fixed-tariff arrangements were commonly put in place, as well as dual-tariff arrangements where night-time power was charged at a lower rate than daytime power. The motivation for dual-tariff arrangements was the lower night-time demand. Dual tariffs made possible the use of low-cost night-time electrical power in applications such as the maintaining of 'heat banks' which served to 'smooth out' the daily demand, and reduce the number of turbines that needed to be turned off overnight, thereby improving the utilisation and profitability of the generation and transmission facilities. The metering capabilities of the 1960s grid meant technological limitations on the degree to which price signals could be propagated through the system.

Through the 1970s to the 1990s, growing demand led to increasing numbers of power stations. In some areas, supply of electricity, especially at peak times, could not keep up with this demand, resulting in poor power quality including blackouts, power cuts, and brownouts. Increasingly, electricity was depended on for industry, heating, communication, lighting, and entertainment, and consumers demanded ever higher levels of reliability.

Towards the end of the 20th century, electricity demand patterns were established: domestic heating and air-conditioning led to daily peaks in demand that were met by an array of 'peaking power generators' that would only be turned on for short periods each day. The relatively low utilisation of these peaking generators (commonly, gas turbines were used due to their relatively lower capital cost and faster start-up times), together with the necessary redundancy in the electricity grid, resulted in high costs to the electricity companies, which were passed on in the form of increased tariffs. In the 21st century, some developing countries like China, India, and Brazil were seen as pioneers of smart grid deployment.[7]

Modernization opportunities[edit]

Since the early 21st century, opportunities to take advantage of improvements in electronic communication technology to resolve the limitations and costs of the electrical grid have become apparent. Technological limitations on metering no longer force peak power prices to be averaged out and passed on to all consumers equally. In parallel, growing concerns over environmental damage from fossil-fired power stations has led to a desire to use large amounts of renewable energy. Dominant forms such as wind power and solar power are highly variable, and so the need for more sophisticated control systems became apparent, to facilitate the connection of sources to the otherwise highly controllable grid.[8] Power from photovoltaic cells (and to a lesser extent wind turbines) has also, significantly, called into question the imperative for large, centralised power stations. The rapidly falling costs point to a major change from the centralised grid topology to one that is highly distributed, with power being both generated and consumed right at the limits of the grid. Finally, growing concern over terrorist attack in some countries has led to calls for a more robust energy grid that is less dependent on centralised power stations that were perceived to be potential attack targets.[9]

Definition of "smart grid"[edit]

The first official definition of Smart Grid was provided by the Energy Independence and Security Act of 2007 (EISA-2007), which was approved by the US Congress in January 2007, and signed to law by President George W. Bush in December 2007. Title XIII of this bill provides a description, with ten characteristics, that can be considered a definition for Smart Grid, as follows:

"It is the policy of the United States to support the modernization of the Nation's electricity transmission and distribution system to maintain a reliable and secure electricity infrastructure that can meet future demand growth and to achieve each of the following, which together characterize a Smart Grid: (1) Increased use of digital information and controls technology to improve reliability, security, and efficiency of the electric grid. (2) Dynamic optimization of grid operations and resources, with full cyber-security. (3) Deployment and integration of distributed resources and generation, including renewable resources. (4) Development and incorporation of demand response, demand-side resources, and energy-efficiency resources. (5) Deployment of 'smart' technologies (real-time, automated, interactive technologies that optimize the physical operation of appliances and consumer devices) for metering, communications concerning grid operations and status, and distribution automation. (6) Integration of 'smart' appliances and consumer devices. (7) Deployment and integration of advanced electricity storage and peak-shaving technologies, including plug-in electric and hybrid electric vehicles, and thermal storage air conditioning. (8) Provision to consumers of timely information and control options. (9) Development of standards for communication and interoperability of appliances and equipment connected to the electric grid, including the infrastructure serving the grid. (10) Identification and lowering of unreasonable or unnecessary barriers to adoption of smart grid technologies, practices, and services."

A common element to most definitions is the application of digital processing and communications to the power grid, making data flow and information management central to the smart grid. Various capabilities result from the deeply integrated use of digital technology with power grids. Integration of the new grid information is one of the key issues in the design of smart grids. Electric utilities now find themselves making three classes of transformations: improvement of infrastructure, called the strong grid in China; addition of the digital layer, which is the essence of the smart grid; and business process transformation, necessary to capitalize on the investments in smart technology. Much of the work that has been going on in electric grid modernization, especially substation and distribution automation, is now included in the general concept of the smart grid.

Early technological innovations[edit]

Smart grid technologies emerged from earlier attempts at using electronic control, metering, and monitoring. In the 1980s, automatic meter reading was used for monitoring loads from large customers, and evolved into the Advanced Metering Infrastructure of the 1990s, whose meters could store how electricity was used at different times of the day.[10]Smart meters add continuous communications so that monitoring can be done in real time, and can be used as a gateway to demand response-aware devices and "smart sockets" in the home. Early forms of such demand side management technologies were dynamic demand aware devices that passively sensed the load on the grid by monitoring changes in the power supply frequency. Devices such as industrial and domestic air conditioners, refrigerators and heaters adjusted their duty cycle to avoid activation during times the grid was suffering a peak condition. Beginning in 2000, Italy's Telegestore Project was the first to network large numbers (27 million) of homes using smart meters connected via low bandwidth power line communication.[11] Some experiments used the term broadband over power lines (BPL), while others used wireless technologies such as mesh networking promoted for more reliable connections to disparate devices in the home as well as supporting metering of other utilities such as gas and water.[8]

Monitoring and synchronization of wide area networks were revolutionized in the early 1990s when the Bonneville Power Administration expanded its smart grid research with prototype sensors that are capable of very rapid analysis of anomalies in electricity quality over very large geographic areas. The culmination of this work was the first operational Wide Area Measurement System (WAMS) in 2000.[12] Other countries are rapidly integrating this technology — China started having a comprehensive national WAMS when the past 5-year economic plan completed in 2012.[13]

The earliest deployments of smart grids include the Italian system Telegestore (2005), the mesh network of Austin, Texas (since 2003), and the smart grid in Boulder, Colorado (2008). See Deployments and attempted deployments below.

Features of the smart grid[edit]

The smart grid represents the full suite of current and proposed responses to the challenges of electricity supply. Because of the diverse range of factors there are numerous competing taxonomies and no agreement on a universal definition. Nevertheless, one possible categorization is given here.


The smart grid makes use of technologies such as state estimation,[14] that improve fault detection and allow self-healing of the network without the intervention of technicians. This will ensure more reliable supply of electricity, and reduced vulnerability to natural disasters or attack.

Although multiple routes are touted as a feature of the smart grid, the old grid also featured multiple routes. Initial power lines in the grid were built using a radial model, later connectivity was guaranteed via multiple routes, referred to as a network structure. However, this created a new problem: if the current flow or related effects across the network exceed the limits of any particular network element, it could fail, and the current would be shunted to other network elements, which eventually may fail also, causing a domino effect. See power outage. A technique to prevent this is load shedding by rolling blackout or voltage reduction (brownout).[citation needed]

The economic impact of improved grid reliability and resilience is the subject of a number of studies and can be calculated using a US DOE funded methodology for US locations using at least one calculation tool.

Flexibility in network topology[edit]

Next-generation transmission and distribution infrastructure will be better able to handle possible bidirection energy flows, allowing for distributed generation such as from photovoltaic panels on building roofs, but also the use of fuel cells, charging to/from the batteries of electric cars, wind turbines, pumped hydroelectric power, and other sources.

Classic grids were designed for one-way flow of electricity, but if a local sub-network generates more power than it is consuming, the reverse flow can raise safety and reliability issues.[15] A smart grid aims to manage these situations.[8]


Numerous contributions to overall improvement of the efficiency of energy infrastructure are anticipated from the deployment of smart grid technology, in particular including demand-side management, for example turning off air conditioners during short-term spikes in electricity price, reducing the voltage when possible on distribution lines through Voltage/VAR Optimization (VVO), eliminating truck-rolls for meter reading, and reducing truck-rolls by improved outage management using data from Advanced Metering Infrastructure systems. The overall effect is less redundancy in transmission and distribution lines, and greater utilization of generators, leading to lower power prices.

Load adjustment/Load balancing[edit]

The total load connected to the power grid can vary significantly over time. Although the total load is the sum of many individual choices of the clients, the overall load is not a stable, slow varying, increment of the load if a popular television program starts and millions of televisions will draw current instantly. Traditionally, to respond to a rapid increase in power consumption, faster than the start-up time of a large generator, some spare generators are put on a dissipative standby mode[citation needed]. A smart grid may warn all individual television sets, or another larger customer, to reduce the load temporarily[16] (to allow time to start up a larger generator) or continuously (in the case of limited resources). Using mathematical prediction algorithms it is possible to predict how many standby generators need to be used, to reach a certain failure rate. In the traditional grid, the failure rate can only be reduced at the cost of more standby generators. In a smart grid, the load reduction by even a small portion of the clients may eliminate the problem.

Peak curtailment/leveling and time of use pricing[edit]

To reduce demand during the high cost peak usage periods, communications and metering technologies inform smart devices in the home and business when energy demand is high and track how much electricity is used and when it is used. It also gives utility companies the ability to reduce consumption by communicating to devices directly in order to prevent system overloads. Examples would be a utility reducing the usage of a group of electric vehicle charging stations or shifting temperature set points of air conditioners in a city.[16] To motivate them to cut back use and perform what is called peak curtailment or peak leveling, prices of electricity are increased during high demand periods, and decreased during low demand periods.[8] It is thought that consumers and businesses will tend to consume less during high demand periods if it is possible for consumers and consumer devices to be aware of the high price premium for using electricity at peak periods. This could mean making trade-offs such as cycling on/off air conditioners or running dishwashers at 9 pm instead of 5 pm. When businesses and consumers see a direct economic benefit of using energy at off-peak times, the theory is that they will include energy cost of operation into their consumer device and building construction decisions and hence become more energy efficient. See Time of day metering and demand response.

According to proponents of smart grid plans,[who?] this will reduce the amount of spinning reserve that atomic utilities have to keep on stand-by, as the load curve will level itself through a combination of "invisible hand" free-market capitalism and central control of a large number of devices by power management services that pay consumers a portion of the peak power saved by turning their device off.


The improved flexibility of the smart grid permits greater penetration of highly variable renewable energy sources such as solar power and wind power, even without the addition of energy storage. Current network infrastructure is not built to allow for many distributed feed-in points, and typically even if some feed-in is allowed at the local (distribution) level, the transmission-level infrastructure cannot accommodate it. Rapid fluctuations in distributed generation, such as due to cloudy or gusty weather, present significant challenges to power engineers who need to ensure stable power levels through varying the output of the more controllable generators such as gas turbines and hydroelectric generators. Smart grid technology is a necessary condition for very large amounts of renewable electricity on the grid for this reason.


The smart grid allows for systematic communication between suppliers (their energy price) and consumers (their willingness-to-pay), and permits both the suppliers and the consumers to be more flexible and sophisticated in their operational strategies. Only the critical loads will need to pay the peak energy prices, and consumers will be able to be more strategic in when they use energy. Generators with greater flexibility will be able to sell energy strategically for maximum profit, whereas inflexible generators such as base-load steam turbines and wind turbines will receive a varying tariff based on the level of demand and the status of the other generators currently operating. The overall effect is a signal that awards energy efficiency, and energy consumption that is sensitive to the time-varying limitations of the supply. At the domestic level, appliances with a degree of energy storage or thermal mass (such as refrigerators, heat banks, and heat pumps) will be well placed to 'play' the market and seek to minimise energy cost by adapting demand to the lower-cost energy support periods. This is an extension of the dual-tariff energy pricing mentioned above.

Demand response support[edit]

Demand response support allows generators and loads to interact in an automated fashion in real time, coordinating demand to flatten spikes. Eliminating the fraction of demand that occurs in these spikes eliminates the cost of adding reserve generators, cuts wear and tear and extends the life of equipment, and allows users to cut their energy bills by telling low priority devices to use energy only when it is cheapest.[17]

Currently, power grid systems have varying degrees of communication within control systems for their high-value assets, such as in generating plants, transmission lines, substations and major energy users. In general information flows one way, from the users and the loads they control back to the utilities. The utilities attempt to meet the demand and succeed or fail to varying degrees (brownouts, rolling blackout, uncontrolled blackout). The total amount of power demand by the users can have a very wide probability distribution which requires spare generating plants in standby mode to respond to the rapidly changing power usage. This one-way flow of information is expensive; the last 10% of generating capacity may be required as little as 1% of the time, and brownouts and outages can be costly to consumers.

Demand response can be provided by commercial, residential loads, and industrial loads.[18] For example, Alcoa's Warrick Operation is participating in MISO as a qualified Demand Response Resource,[19] and the Trimet Aluminium uses its smelter as a short-term mega-battery.[20]

Latency of the data flow is a major concern, with some early smart meter architectures allowing actually as long as 24 hours delay in receiving the data, preventing any possible reaction by either supplying or demanding devices.[21]

Platform for advanced services[edit]

As with other industries, use of robust two-way communications, advanced sensors, and distributed computing technology will improve the efficiency, reliability and safety of power delivery and use. It also opens up the potential for entirely new services or improvements on existing ones, such as fire monitoring and alarms that can shut off power, make phone calls to emergency services, etc.

Provision megabits, control power with kilobits, sell the rest[edit]

The amount of data required to perform monitoring and switching one's appliances off automatically is very small compared with that already reaching even remote homes to support voice, security, Internet and TV services. Many smart grid bandwidth upgrades are paid for by over-provisioning to also support consumer services, and subsidizing the communications with energy-related services or subsidizing the energy-related services, such as higher rates during peak hours, with communications. This is particularly true where governments run both sets of services as a public monopoly. Because power and communications companies are generally separate commercial enterprises in North America and Europe, it has required considerable government and large-vendor effort to encourage various enterprises to cooperate. Some, like Cisco, see opportunity in providing devices to consumers very similar to those they have long been providing to industry.[22] Others, such as Silver Spring Networks[23] or Google,[24][25] are data integrators rather than vendors of equipment. While the AC power control standards suggest powerline networking would be the primary means of communication among smart grid and home devices, the bits may not reach the home via Broadband over Power Lines (BPL) initially but by fixed wireless.


The bulk of smart grid technologies are already used in other applications such as manufacturing and telecommunications and are being adapted for use in grid operations.[26]

  • Integrated communications: Areas for improvement include: substation automation, demand response, distribution automation, supervisory control and data acquisition (SCADA), energy management systems, wireless mesh networks and other technologies, power-line carrier communications, and fiber-optics.[8] Integrated communications will allow for real-time control, information and data exchange to optimize system reliability, asset utilization, and security.[27]
  • Sensing and measurement: core duties are evaluating congestion and grid stability, monitoring equipment health, energy theft prevention,[28] and control strategies support. Technologies include: advanced microprocessor meters (smart meter) and meter reading equipment, wide-area monitoring systems, dynamic line rating (typically based on online readings by Distributed temperature sensing combined with Real time thermal rating (RTTR) systems), electromagnetic signature measurement/analysis, time-of-use and real-time pricing tools, advanced switches and cables, backscatter radio technology, and Digital protective relays.
  • Smart meters.
  • Phasor measurement units. Many in the power systems engineering community believe that the Northeast blackout of 2003 could have been contained to a much smaller area if a wide area phasor measurement network had been in place.[29]
  • Distributed power flow control: power flow control devices clamp onto existing transmission lines to control the flow of power within. Transmission lines enabled with such devices support greater use of renewable energy by providing more consistent, real-time control over how that energy is routed within the grid. This technology enables the grid to more effectively store intermittent energy from renewables for later use.[30]
  • Smart power generation using advanced components: smart power generation is a concept of matching electricity generation with demand using multiple identical generators which can start, stop and operate efficiently at chosen load, independently of the others, making them suitable for base load and peaking power generation.[31] Matching supply and demand, called load balancing,[16] is essential for a stable and reliable supply of electricity. Short-term deviations in the balance lead to frequency variations and a prolonged mismatch results in blackouts. Operators of power transmission systems are charged with the balancing task, matching the power output of all the generators to the load of their electrical grid. The load balancing task has become much more challenging as increasingly intermittent and variable generators such as wind turbines and solar cells are added to the grid, forcing other producers to adapt their output much more frequently than has been required in the past. First two dynamic grid stability power plants utilizing the concept has been ordered by Elering and will be built by Wärtsilä in Kiisa, Estonia (Kiisa Power Plant). Their purpose is to "provide dynamic generation capacity to meet sudden and unexpected drops in the electricity supply." They are scheduled to be ready during 2013 and 2014, and their total output will be 250 MW.[32]
  • Power system automation enables rapid diagnosis of and precise solutions to specific grid disruptions or outages. These technologies rely on and contribute to each of the other four key areas. Three technology categories for advanced control methods are: distributed intelligent agents (control systems), analytical tools (software algorithms and high-speed computers), and operational applications (SCADA, substation automation, demand response, etc.). Using artificial intelligence programming techniques, Fujian power grid in China created a wide area protection system that is rapidly able to accurately calculate a control strategy and execute it.[33] The Voltage Stability Monitoring & Control (VSMC) software uses a sensitivity-based successive linear programming method to reliably determine the optimal control solution.[34]


Major programs[edit]

IntelliGrid – Created by the Electric Power Research Institute (EPRI), IntelliGrid architecture provides methodology, tools, and recommendations for standards and technologies for utility use in planning, specifying, and procuring IT-based systems, such as advanced metering, distribution automation, and demand response. The architecture also provides a living laboratory for assessing devices, systems, and technology. Several utilities have applied IntelliGrid architecture including Southern California Edison, Long Island Power Authority, Salt River Project, and TXU Electric Delivery. The IntelliGrid Consortium is a public/private partnership that integrates and optimizes global research efforts, funds technology R&D, works to integrate technologies, and disseminates technical information.[35]

Grid 2030 – Grid 2030 is a joint vision statement for the U.S. electrical system developed by the electric utility industry, equipment manufacturers, information technology providers, federal and state government agencies, interest groups, universities, and national laboratories. It covers generation, transmission, distribution, storage, and end-use.[36] The National Electric Delivery Technologies Roadmap is the implementation document for the Grid 2030 vision. The Roadmap outlines the key issues and challenges for modernizing the grid and suggests paths that government and industry can take to build America's future electric delivery system.[37]

Modern Grid Initiative (MGI) is a collaborative effort between the U.S. Department of Energy (DOE), the National Energy Technology Laboratory (NETL), utilities, consumers, researchers, and other grid stakeholders to modernize and integrate the U.S. electrical grid. DOE's Office of Electricity Delivery and Energy Reliability (OE) sponsors the initiative, which builds upon Grid 2030 and the National Electricity Delivery Technologies Roadmap and is aligned with other programs such as GridWise and GridWorks.[38]

GridWise – A DOE OE program focused on developing information technology to modernize the U.S. electrical grid. Working with the GridWise Alliance, the program invests in communications architecture and standards; simulation and analysis tools; smart technologies; test beds and demonstration projects; and new regulatory, institutional, and market frameworks. The GridWise Alliance is a consortium of public and private electricity sector stakeholders, providing a forum for idea exchanges, cooperative efforts, and meetings with policy makers at federal and state levels.[39]

GridWise Architecture Council (GWAC) was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the nation’s electric power system. The GWAC members are a balanced and respected team representing the many constituencies of the electricity supply chain and users. The GWAC provides industry guidance and tools to articulate the goal of interoperability across the electric system, identify the concepts and architectures needed to make interoperability possible, and develop actionable steps to facilitate the inter operation of the systems, devices, and institutions that encompass the nation's electric system. The GridWise Architecture Council Interoperability Context Setting Framework, V 1.1 defines necessary guidelines and principles.[40]

GridWorks – A DOE OE program focused on improving the reliability of the electric system through modernizing key grid components such as cables and conductors, substations and protective systems, and power electronics. The program's focus includes coordinating efforts on high temperature superconducting systems, transmission reliability technologies, electric distribution technologies, energy storage devices, and GridWise systems.[41]

Pacific Northwest Smart Grid Demonstration Project. - This project is a demonstration across five Pacific Northwest states-Idaho, Montana, Oregon, Washington, and Wyoming. It involves about 60,000 metered customers, and contains many key functions of the future smart grid.[42]

Solar Cities - In Australia, the Solar Cities programme included close collaboration with energy companies to trial smart meters, peak and off-peak pricing, remote switching and related efforts. It also provided some limited funding for grid upgrades.[43]

Smart Grid Energy Research Center (SMERC) - Located at University of California, Los Angeles has dedicated its efforts to large-scale testing of its smart EV charging network technology - WINSmartEV™. It created another platform for a Smart Grid architecture enabling bidirectional flow of information between a utility and consumer end-devices - WINSmartGrid™. SMERC has also developed a demand response (DR) test bed that comprises a Control Center, Demand Response Automation Server (DRAS), Home-Area-Network (HAN), Battery Energy Storage System (BESS), and photovoltaic (PV) panels. These technologies are installed within the Los Angeles Department of Water and Power and Southern California Edison territory as a network of EV chargers, battery energy storage systems, solar panels, DC fast charger, and Vehicle-to-Grid (V2G) units. These platforms, communications and control networks enables UCLA-led projects within the greater Los Angeles to be researched, advanced and tested in partnership with the two key local utilities, SCE and LADWP.[44][better source needed]

Smart grid modelling[edit]

Many different concepts have been used to model intelligent power grids. They are generally studied within the framework of complex systems. In a recent brainstorming session,[45] the power grid was considered within the context of optimal control, ecology, human cognition, glassy dynamics, information theory, microphysics of clouds, and many others. Here is a selection of the types of analyses that have appeared in recent years.

Protection systems that verify and supervise themselves

Pelqim Spahiu and Ian R. Evans in their study introduced the concept of a substation based smart protection and hybrid Inspection Unit.[46][47]

Kuramoto oscillators

The Kuramoto model is a well-studied system. The power grid has been described in this context as well.[48][49] The goal is to keep the system in balance, or to maintain phase synchronization (also known as phase locking). Non-uniform oscillators also help to model different technologies, different types of power generators, patterns of consumption, and so on. The model has also been used to describe the synchronization patterns in the blinking of fireflies.[48]


Power grids have been related to complex biological systems in many other contexts. In one study, power grids were compared to the dolphin social network.[50] These creatures streamline or intensify communication in case of an unusual situation. The intercommunications that enable them to survive are highly complex.

Random fuse networks

In percolation theory, random fuse networks have been studied. The current density might be too low in some areas, and too strong in others. The analysis can therefore be used to smooth out potential problems in the network. For instance, high-speed computer analysis can predict blown fuses and correct for them, or analyze patterns that might lead to a power outage.[51] It is difficult for humans to predict the long term patterns in complex networks, so fuse or diode networks are used instead.

Smart Grid Communication Network

Network Simulators are used to simulate/emulate network communication effects. This typically involves setting up a lab with the smart grid devices, applications etc. with the virtual network being provided by the network simulator.[52]

Neural networks

Neural networks have been considered for power grid management as well. Electric power systems can be classified in multiple different ways: non-linear, dynamic, discrete, or random. Artificial Neural Networks (ANNs) attempt to solve the most difficult of these problems, the non-linear problems.

Demand Forecasting

One application of ANNs is in demand forecasting. In order for grids to operate economically and reliably, demand forecasting is essential, because it is used to predict the amount of power that will be consumed by the load. This is dependent on weather conditions, type of day, random events, incidents, etc. For non-linear loads though, the load profile isn't smooth and as predictable, resulting in higher uncertainty and less accuracy using the traditional Artificial Intelligence models. Some factors that ANNs consider when developing these sort of models: classification of load profiles of different customer classes based on the consumption of electricity, increased responsiveness of demand to predict real time electricity prices as compared to conventional grids, the need to input past demand as different components, such as peak load, base load, valley load, average load, etc. instead of joining them into a single input, and lastly, the dependence of the type on specific input variables. An example of the last case would be given the type of day, whether its weekday or weekend, that wouldn't have much of an effect on Hospital grids, but it'd be a big factor in resident housing grids' load profile.[53][54][55][56][57]

Markov processes

As wind power continues to gain popularity, it becomes a necessary ingredient in realistic power grid studies. Off-line storage, wind variability, supply, demand, pricing, and other factors can be modelled as a mathematical game. Here the goal is to develop a winning strategy. Markov processes have been used to model and study this type of system.[58]

Maximum entropy

All of these methods are, in one way or another, maximum entropy methods, which is an active area of research.[59][60] This goes back to the ideas of Shannon, and many other researchers who studied communication networks. Continuing along similar lines today, modern wireless network research often considers the problem of network congestion,[61] and many algorithms are being proposed to minimize it, including game theory,[62] innovative combinations of FDMA, TDMA, and others.


Market outlook[edit]

In 2009, the US smart grid industry was valued at about $21.4 billion – by 2014, it will exceed at least $42.8 billion. Given the success of the smart grids in the U.S., the world market is expected to grow at a faster rate, surging from $69.3 billion in 2009 to $171.4 billion by 2014. With the segments set to benefit the most will be smart metering hardware sellers and makers of software used to transmit and organize the massive amount of data collected by meters.[63] Recently, the World Economic Forum reported a transformational investment of more than $7.6 trillion is needed over the next 25 years (or $300 billion per year) to modernize, expand, and decentralize the electricity infrastructure with technical innovation as key to the transformation.[64]

General economics developments[edit]

As customers can choose their electricity suppliers, depending on their different tariff methods, the focus of transportation costs will be increased. Reduction of maintenance and replacements costs will stimulate more advanced control.

A smart grid precisely limits electrical power down to the residential level, network small-scale distributed energy generation and storage devices, communicate information on operating status and needs, collect information on prices and grid conditions, and move the grid beyond central control to a collaborative network.[65]

US and UK savings estimates and concerns[edit]

One United States Department of Energy study calculated that internal modernization of US grids with smart grid capabilities would save between 46 and 117 billion dollars over the next 20 years.[66] As well as these industrial modernization benefits, smart grid features could expand energy efficiency beyond the grid into the home by coordinating low priority home devices such as water heaters so that their use of power takes advantage of the most desirable energy sources. Smart grids can also coordinate the production of power from large numbers of small power producers such as owners of rooftop solar panels — an arrangement that would otherwise prove problematic for power systems operators at local utilities.

One important question is whether consumers will act in response to market signals. The U.S. Department of Energy (DOE) as part of the American Recovery and Reinvestment Act Smart Grid Investment Grant and Demonstrations Program funded special consumer behavior studies to examine the acceptance, retention, and response of consumers subscribed to time-based utility rate programs that involve advanced metering infrastructure and customer systems such as in-home displays and programmable communicating thermostats.

Another concern is that the cost of telecommunications to fully support smart grids may be prohibitive. A less expensive communication mechanism is proposed[citation needed] using a form of "dynamic demand management" where devices shave peaks by shifting their loads in reaction to grid frequency. Grid frequency could be used to communicate load information without the need of an additional telecommunication network, but it would not support economic bargaining or quantification of contributions.

Although there are specific and proven smart grid technologies in use, smart grid is an aggregate term for a set of related technologies on which a specification is generally agreed, rather than a name for a specific technology. Some of the benefits of such a modernized electricity network include the ability to reduce power consumption at the consumer side during peak hours, called demand side management; enabling grid connection of distributed generation power (with photovoltaic arrays, small wind turbines, micro hydro, or even combined heat power generators in buildings); incorporating grid energy storage for distributed generation load balancing; and eliminating or containing failures such as widespread power grid cascading failures. The increased efficiency and reliability of the smart grid is expected to save consumers money and help reduce CO2 emissions.[67]

Oppositions and concerns[edit]

Most opposition and concerns have centered on smart meters and the items (such as remote control, remote disconnect, and variable rate pricing) enabled by them. Where opposition to smart meters is encountered, they are often marketed as "smart grid" which connects smart grid to smart meters in the eyes of opponents. Specific points of opposition or concern include:

  • consumer concerns over privacy, e.g. use of usage data by law enforcement
  • social concerns over "fair" availability of electricity
  • concern that complex rate systems (e.g. variable rates) remove clarity and accountability, allowing the supplier to take advantage of the customer
  • concern over remotely controllable "kill switch" incorporated into most smart meters
  • social concerns over Enron style abuses of information leverage
  • concerns over giving the government mechanisms to control the use of all power using activities
  • concerns over RF emissions from smart meters


While modernization of electrical grids into smart grids allows for optimization of everyday processes, a smart grid, being online, can be vulnerable to cyberattacks.[68] Transformers which increase the voltage of electricity created at power plants for long-distance travel, transmission lines themselves, and distribution lines which deliver the electricity to its consumers are particularly susceptible.[69] These systems rely on sensors which gather information from the field and then deliver it to control centers, where algorithms automate analysis and decision-making processes. These decisions are sent back to the field, where existing equipment execute them.[70] Hackers have the potential to disrupt these automated control systems, severing the channels which allow generated electricity to be utilized.[69] This is called a denial of service or DoS attack. They can also launch integrity attacks which corrupt information being transmitted along the system as well as desynchronization attacks which affect when such information is delivered to the appropriate location.[70] Additionally, intruders can again access via renewable energy generation systems and smart meters connected to the grid, taking advantage of more specialized weaknesses or ones whose security has not been prioritized. Because a smart grid has a large number of access points, like smart meters, defending all of its weak points can prove difficult.[68] There is also concern on the security of the infrastructure, primarily that involving communications technology. Concerns chiefly center around the communications technology at the heart of the smart grid. Designed to allow real-time contact between utilities and meters in customers' homes and businesses, there is a risk that these capabilities could be exploited for criminal or even terrorist actions.[8] One of the key capabilities of this connectivity is the ability to remotely switch off power supplies, enabling utilities to quickly and easily cease or modify supplies to customers who default on payment. This is undoubtedly a massive boon for energy providers, but also raises some significant security issues.[71] Cybercriminals have infiltrated the U.S. electric grid before on numerous occasions.[72] Aside from computer infiltration, there are also concerns that computer malware like Stuxnet, which targeted SCADA systems which are widely used in industry, could be used to attack a smart grid network.

Electricity theft is a concern in the U.S. where the smart meters being deployed use RF technology to communicate with the electricity transmission network.[citation needed] People with knowledge of electronics can devise interference devices to cause the smart meter to report lower than actual usage.[citation needed] Similarly, the same technology can be employed to make it appear that the energy the consumer is using is being used by another customer, increasing their bill.[citation needed]

The damage from a well-executed, sizable cyberattack could be extensive and long-lasting. One incapacitated substation could take from nine days to over a year to repair, depending on the nature of the attack. It can also cause an hours-long outage in a small radius. It could have an immediate effect on transportation infrastructure, as traffic lights and other routing mechanisms as well as ventilation equipment for underground roadways is reliant on electricity.[73] Additionally, infrastructure which relies on the electric grid, including wastewater treatment facilities, the information technology sector, and communications systems could be impacted[73]

The December 2015 Ukraine power grid cyberattack, the first recorded of its kind, disrupted services to nearly a quarter of a million people by bringing substations offline.[74][75]


Leave a Reply

Your email address will not be published. Required fields are marked *